
Pre-fab SB Le Gabion

Managing and Preparing pre-fab SB projects

s B A

Le Gabion

October 200

To my great pleasure full time eco builder

Formula

- Open schedule
- Building team

- Pushing the envelope
- SB excellent free marketing
- re-grow-able materials
- More comfort at the same price

Who am I?

René Dalmeijer rene.dalmeijer@hetnet.nl

- SB builder
- SBN Chairman

Background

- HTS Building engineering, building physics
- Prego 1984 Kristinson
- 20 years IT/Process consultancy
- 1998 1st ESBBC, Bretagne
- Now since June 2005 SB eco/builder

Sustainable building

- Integrated<>Piece meal
- 3x sustainable
 - regrowable materials
 - low energy consumption
 - Long useful life
- Mission: Generate acceptance

- High insulation R > 6
- Pleasant atmosphere
- Competitive price

Features IJburg 1

As much as possible renewable resources

- Straw
- Earth inner plaster
- Wood (pine)
- Sapipura FSC window frames
- Hydraulic lime exterior plaster
- Green roof, without metal trim
- No piles

Natural hydraulic LPM-10 Works very well Very expensive €1.25/kg €15000,- for 135m^2 exterior plaster

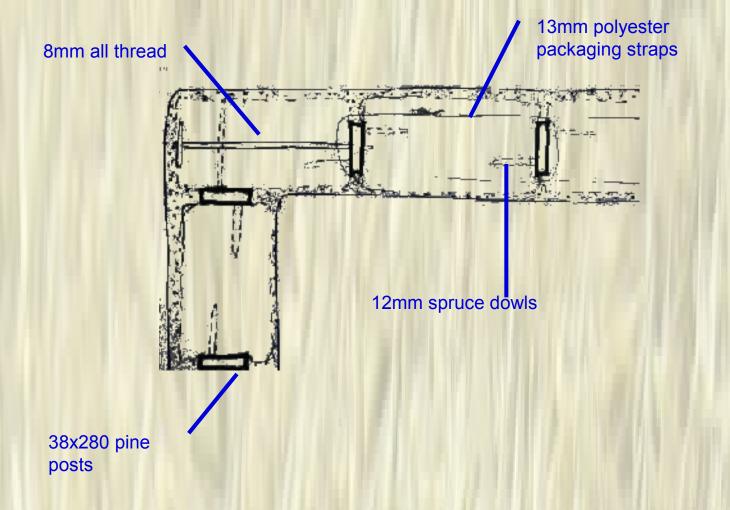
QuickTime[®] and a decompressor are needed to see this picture. Radiant floor heating

Paraffine impregnated pellets 27C phase change

Original plan: heat pump

Now: council heating

Too complex and experimental for owner


Earth plaster workshops

16 participants totalmore workshops to come2 customers !

2 customer

5 story pre-fab SB

Features IJburg 2

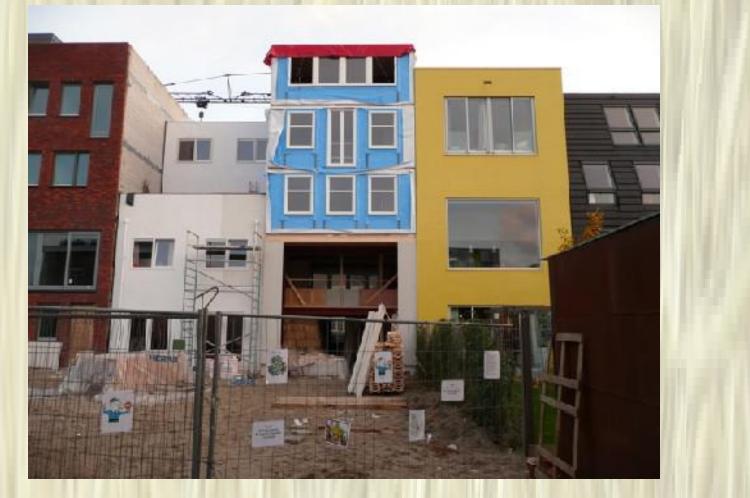
Pre-fab 5 story straw bale 'Wood Frame with thermal mass'

- Pre-fab straw bale elements
- High insulation exterior walls Rc>5
- Thermal mass 15-20 ton earth plaster
- Heat pump fed low temperature radiant heating
- Pre-fab elements (pine)
- Window frames (pine)
- Larch exterior cladding
- 'Massive' Steel portal frames

Preparations at the factory

The first pre-fab SB element

Day 1 sorting


Day 2

Day 3 erection

Day 5 erection

Day 11 finish build

Advantages IJburg 2

- substantially lower €/m²
- faster finish < 2 months

Evolution:

eliminate steel portal frames

Challenges:

- Even faster finish
- Lighter construction
- Even less concrete in foundation and floor

Preparing pre-fab building projects

Requires rigid configuration management during who Why?

Many pressures to stray off course

- New requirements
- Miscommunication
- Short cuts

Configuration management

Manage expectations

Quality according to CMII

'Supply what the customer expects'

Involve all parties

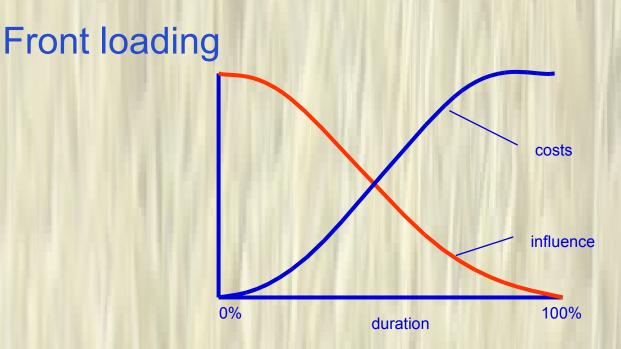
Explicit specifications

Communicate, communicate, communicate...

Configuration management

Tools:

- Patterns
- Front loading
- QFD


Patterns

Method to maintain consistency during project

Natural Patterns

Develop own patterns for project

A Pattern Language, Christopher Alexander

System engineering

integrated approach <> reductionist

materials with multiple functions

The 5th discipline, Peter Senge

QFD quality function deployment

separate the what's from the how's

select the right how's

House of quality

Whats

	insulation	earth plaster	radiant heat	heat pump	greenhouse	high E glazing 🗙	air heating 🗙	HRV	
warmth									
sound									
light									
low C02									
low cost									

Hows

Step-by-step QFD, John Terninko

The whole Procedure

- 1. Define Patterns
- 2. Determine Functions
- 3. Preliminary design
- 4. Green ambition, define what's
- 5. Choose how's
- 6. Select partners
- 7. Definite design
- 8. Detail design at component level
- 9. Design build procedure
- 10. Plan build
- 11. Execute build
- 12. Evaluate project

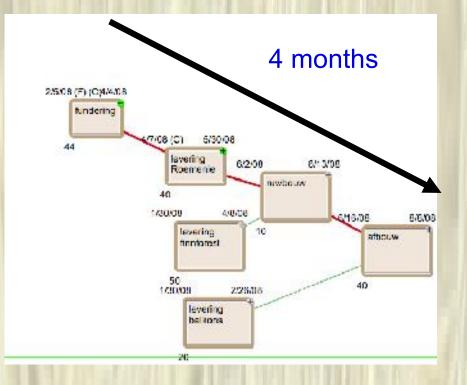
6-12 months

3-10 months

2-4 months

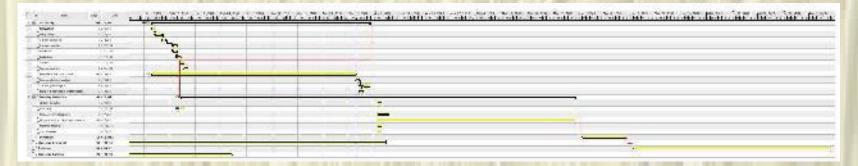
Technical Specification

Preamble:


- expressed in Patterns
- States ambition

Technical specs:

- As specific as possible
- How <u>and why</u>


This document is not static and should evolve during the projec

Plan

Plan

2 months waiting for components

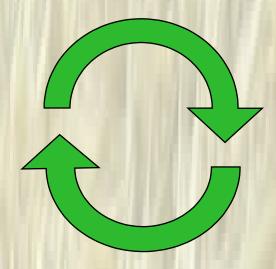
2 months actual build

Evaluate

Lessons learned

The best way to learn is from mistakes

Logistics is essential


Last two trucks mixed

Every component explicit

- Balanced ventilation system
 First time right
 - EPDM roof cover leak

No steel frames

We will make new mistakes

Specs IJburg 3

Pre-fab 5 story SB 'Passief wood frame with thermal mass'

- Pre-fab 'Passiefhaus' elements
- Exterior walls Rc>5
- Thermal mass 15-20 ton earth plaster
- Heat pump LT 20C radiant wall/floor heating
- Pre-fab elements and windows (pine)
- PVC free plumbing
- Larch cladding
- Full wood structure

My birthday on the groundfloor

Build day 1

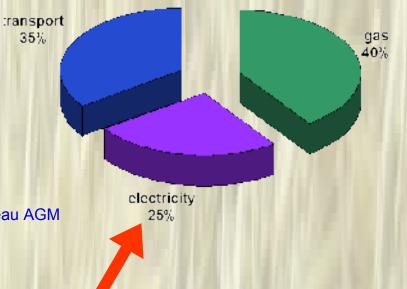
Build day 5

Build day 7

'Passiefhaus' window details

SB entry 2 day weekend workshop

Tadelact in the bathroom



CO2 savings with straw bales

- 100m2 straw bale exterior wall
- Wood frame, plaster (not earthen)
- Other structures conventional

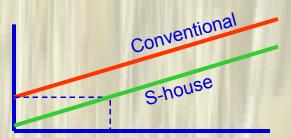
18 ton savings

Depending on choices even more is
 Bron adviesbureau AGM

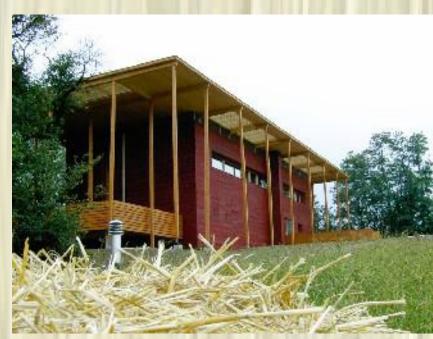
18 ton =

= 2,5 year average household consumption

Bron CBS


S- House, GrAT TU Wien

S- House


- 0 energy 'Passiefhaus'
- extreme Nawaro

The lower energy use,

The greater impact building energy has on LCA

How can you contribute?

Join forces

We need the support of academia

We need to do research to support the wide scale introduction of re-growable building materials

Do practical projects instead of creating paper tigers

Self regulation (European) and ETA is the path for high volume

SBN, Strobouw Nederland

- Central information point for straw bale building in The Netherlands
- Advice
- Central library
- Platform for straw bale designers, consultants and builders

www.strobouw.nl

Formula

- Open schedule
- Building team

Sustainable builder, consultant

René Dalmeijer rene.dalmeijer@hetnet.nl

Style concept low tech

Wageningen

Wageningen

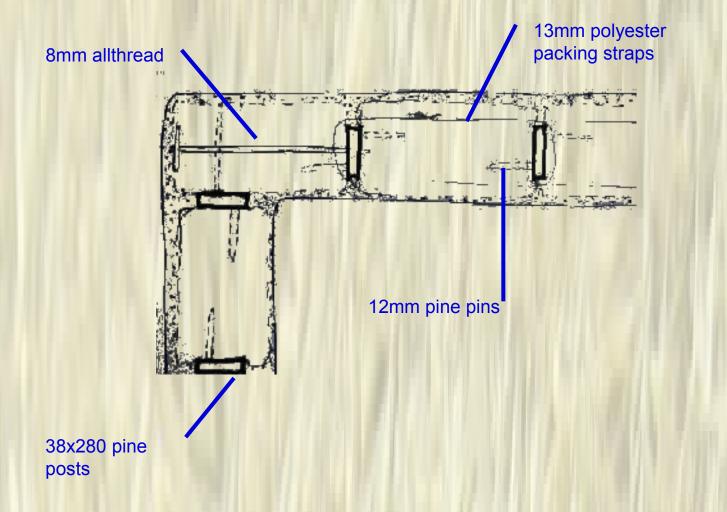
Boots ladder frame, > 200 toe up outside > 30 toe up inside

Drainage: Gravel, Mussel shells, Perlite, Pumice

NO barriers!

Pinning systems for load bearing: Central, external, straps, mesh, none

Rain covers: Non load bearing > Roof, Load bearing > covers



Knots for: Custom bales Tying external pins Corners

Straps: Compressing bales Keeping posts straight Cross bracing

All thread: Tucking in corners Around big windows

